Don't miss

## Tree Traversal(Binary Tree)

on 07:44

Tree Traversal or Traversing a binary tree is a method that refers as "to visit each node of tree in a specified order(exactly one times per node)".

Ways to traverse the tree:-

1)In-order Traversal:-

Procedure:-1)Traverse the left sub-tree.

2)Visits Root node.
3)Post Order traversal.

In simple words....Left-->Root-->Right or L(e)-->R-->R(i)

2)Post Order Traversal:-

Procedure:-1)Traverse Right Sub Tree.

2)Traverse Left Sub Tree.
3)Visits Root node.

In simple words....Right-->Left-->Root R(i)-->L(e)-->R

3)Preorder Traversal:-

Procedure:-1)Visits Root node.

2)Traverse Left Sub Tree.
3)Traverse Right Sub Tree.

In simple words....Root-->Left-->Right or R-->L(e)-->R(i)

Let us take an examples:-

Example 1:-

In Order:-E,B,D,G,K,J,I,H,F,A,C,N,M.

Post order:-E,K,J,I,H,G,F,D,B,N,M,C,A.

Preorder:-A,B,E,D,F,G,H,I,J,K,C,M,N.

Example 2:-

In Order:-K,G,L,H,M,D,B,A,E,O,Q,R,S,T,P,N,C.

Post Order:-K,L,M,H,G,D,B,T,S,R,Q,P,O,N,E,C,A.

Preorder:-A,B,D,G,K,L,H,M,C,E,N,O,P,Q,R,S,T.

Example 3:-(a*b)+(c/d)-e+(f^g)

In order:-a*b+c/d-e+f^g.

Post Order:-ab*cd/+efg^+-.

Preorder:--+*ab/cd+e^fg.

Example:- 4:-a*(b+c)-d/e+(f%g)^h.

In Order:-a*b+c-d/e+f%g^h.

Post Order:-abc+*de/-fg%h^+.

Preorder:-+-*a+bc/de^%fgh.